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SUMMARY

We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes
the latent variable model of Sammel and Ryan. The proposed model assumes a #exible correlation structure
among the multiple outcomes, and allows a global test of the impact of exposure across outcomes. In
contrast to the Sammel}Ryan model, the MLMM separates the mean and correlation parameters so that
the mean estimation will remain reasonably robust even if the correlation is misspeci"ed. The model is
applied to birth defects data, where continuous data on the size of infants who were exposed to anticonvul-
sant medications in utero are compared to controls. Copyright ( 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

In many medical research settings, the e!ect of interest cannot be characterized by a single
outcome, but instead multiple outcomes need to be measured on each individual under study.
A classic example of this arises in the study of birth outcomes, since teratogenic exposures often
result in a syndrome wherein the e!ect is identi"ed not through a single outcome, but by
a distinctive pattern of various related defects (Holmes et al.1).

The development of statistical methods for the analysis of multiple outcomes has been an area
of active research for many decades. There is a rich body of literature on statistical methods for
multivariate methods for continuous outcomes (see, for example, Johnson and Wichern2). One of
the more popular approaches, factor analysis, aims to reduce multi-dimensional data into
a smaller number of latent outcomes which cannot be directly measured. This concept of latent
variables was "rst attributed to Spearman in 1904,3 and has become popular in a variety of
applied settings (see Everitt4). Latent variable models have also been considered under the label
&measurement model' in the structural equations framework (Bentler and Weeks5). Recently
Sammel and Ryan6 generalized this model to include "xed e!ect covariates on both the latent and
observed variables. The model of Sammel and Ryan6 can be thought of as a formalization of the
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commonly used two-step procedure wherein one "rst performs a factor analysis or principal
components analysis to identify a linear combination of outcomes that are most correlated with
each other, then models this linear combination as a function of covariates. The Sammel}Ryan
model also generalizes the class of linear mixed models (Laird and Ware,7 Harville8) and can
accommodate either maximum likelihood or restricted maximum likelihood (REML) estimation
of unknown model parameters. While the approach has some appealing features, a disadvantage
is its lack of robustness due to the fact that covariance parameters are also present in the mean.

In this paper we develop a more general approach, based on a multivariate linear mixed model
(MLMM), which models the mean and covariance as a function of covariates but separates mean
and correlation parameters so that the mean estimation will be more robust to misspeci"cation of
the correlation structure. We also provide a global test of the impact of exposure across
outcomes. We begin by describing the data which motivated our research, based on a study of in
utero exposure to anticonvulsant medications (Holmes et al.9). We then brie#y review three
existing approaches to analysing these data, including generalized estimating equations (GEEs),
two-stage factor analysis (TSFA), and latent variable models (LVMs). After discussing drawbacks
to these approaches, we present the new method (MLMM), then compare the performance of all
four methods using the birth defect data.

2. THE BIRTH DEFECT DATA

Holmes et al.9 discuss an observational cohort study of infants born at Brigham and Women's
Hospital in Boston, U.S.A. The study included subjects in three di!erent groups, including Drug
Exposed (epileptic women who took medications during their pregnancy), Seizure History
(epileptic women who stopped taking anticonvulsants medications during their pregnancy) and
Control (women randomly chosen from those who gave birth at the same hospital at the same
time as the Drug Exposed and Seizure History women). A variety of di!erent outcomes were
assessed on the infants, including weight, size, a variety of cranial and limb measurements,
presence or absence of major and minor malformations, as well as assessments on a variety of
minor physical anomalies. Although not of clinical importance themselves, these minor physical
anomalies, which include features such as long nasal septum, antiverted nostril, tapered "ngers
etc., are important since they can serve as &markers' for the presence of more serious and perhaps
as yet unobservable e!ects.

There are several di!erent scienti"c questions of interest. Of primary importance is the question
of whether in utero exposure to anticonvulsant medications leads to adverse birth outcomes, or
whether e!ects are due to the maternal epilepsy itself. This aim will not be addressed in the
analysis presented here. For the illustration of our methods for multiple outcomes, we will
consider only 628 subjects which comprise the exposed and control subgroups. This will allow us
to study the joint e!ect of medications and maternal epilepsy. Also of interest is the question of
which outcomes, and in particular, which minor anomalies, are useful in predicting whether
a baby is &a!ected'. Finally, there is interest in using the data on multiple outcomes to construct
a severity score that can indicate how severely an individual baby has been a!ected. Only subjects
whose exposure status was blinded from the examiner have been used.

Table I shows some summary statistics for a small subset of these continuous measurements
that will be used to illustrate our results. Variables include (in order) bitemporal (side to side) head
diameter, nose length, ear length and width, "nger length, weight and anterior}posterior (front to
back) head diameter. The table shows means and standard deviations among exposed and
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Table I. Summary statistics

n"176 n"452 b) p-value
Exposed Control

Mean (SE) Mean (SE)

Head-bt 9)10 (0)059) 9)40 (0)024) !0)212 (0)001
Nose 1)94 (0)010) 1)98 (0)015) !0)031 0)104
Ear length 3)60 (0)026) 3)73 (0)016) !0)025 0)378
Ear width 2)13 (0)017) 2)17 (0)009) !0)017 0)336
Finger 2)86 (0)021) 2)95 (0)017) !0)045 0)103

Weight 3)28 (0)005) 3)41 (0)026) !0)004 0)917
Head-ap 11)67 (0)055) 11)74 (0)027) !0)007 0)880

* Adjusted for gender and gestational age using linear regression models

control infants, along with the estimated exposure e!ect based on a linear regression model that
also adjusts for gender and gestational age. However, only bitemporal head width shows
a statistically signi"cant (p(0)05) di!erence between controls and exposed infants. These data
convincingly illustrate the need for a multivariate approach that allows for an overall assessment
of exposure e!ects by combining information from these related outcomes and could detect the
exposure e!ects with better statistical power. A more standard approach based on, say, Bonfer-
roni adjustments, would lead to the conclusion of no e!ect.

3. METHODS FOR ANALYSING MULTIPLE OUTCOMES

In this section, we will consider four methods for the analysis of multiple outcomes. Our objective
is to characterize the e!ect of a binary exposure variable, z

i
, on a M]1 vector of continuous

outcomes, y
i
"(y

i1
,2, y

iM
)T, for subject i"1,2, n while adjusting for additional covariates, x

ij
.

The question of interest is how to assess an overall exposure e!ect using the information from the
M outcomes. We will discuss advantages and disadvantages of each approach and illustrate each
using the birth defects data with the "rst "ve outcomes in Table I, where interest lies in estimating
an overall e!ect of exposure to anticonvulsants and maternal epilepsy on the birth outcomes
while adjusting for the e!ects of gender and gestational age. More detailed comparisons of these
four approaches will be given in Section 4. In that section, we will consider two models: model 1
will use only the "rst "ve outcomes from Table I, while model 2 will use all seven. The reason for
considering these two models is that we want to assess the sensitivity of the di!erent approaches
to the subset of outcomes chosen for inclusion in the analysis.

3.1. Generalized estimating equations

Generalized estimating equations (GEEs) (Liang and Zeger,10 Zeger and Liang11) provide one
natural approach to analysing multiple outcome data. A key feature of GEE is that consistent
estimates can be obtained if the means of the outcomes are correctly speci"ed, even when the
correlation between the outcomes has been misspeci"ed. We assume that the mean model for the
jth outcome is

E(y
ij
)"xT

ij
a
j
#z

i
b
j

(1)
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Table II. Generalized estimating equations } model 1

Outcome r2 b Robust SE p-value

(a) Individual exposure estimates
Bitemporal 0)272 !0)212 !0)058 (0)001
Nose 0)043 !0)030 0)019 0)102
Ear length 0)099 !0)025 0)028 0)370
Ear width 0)037 !0)017 0)017 0)336
Finger 0)095 !0)045 0)028 0)104

o 0)080

(b) Common exposure estimates
Bitemporal 0)278 !0)031 0)012 0)012
Nose 0)043
Ear length 0)099
Ear width 0)037
Finger 0)095

o 0)079

where a
j
and b

j
, respectively, measure the e!ects of the covariates x and the exposure e!ect on the

jth outcome, y
ij
. In matrix and vector notation, we have

E(y
i
)"x

i
a#z

i
b

where x
i

is a block diagonal matrix with xT

ij
on the diagonal and a"(aT

1
,2, aT

M
)T and

b"(b
1
,2, b

M
)T. A sensible choice for our application is an exchangeable working correlation

among the M outcomes:

var (y
i
)"W1@2((1!o)I#oJ )W1@2

where I is the M]M identity matrix, J is the M]M matrix of ones and W"diagMp2
j
N. Using

weighted least squares, the unknown mean parameters a and b can be estimated as the solution to
an estimating equation similar to equation (6) of Liang and Zeger.10 Similarly, the &sandwich
variance' of Liang and Zeger can be used to estimate the variance of the estimated parameters.
The working variance and correlation parameters (p2

1
,2, p2

M
) and o can be estimated using the

method of moments. Results of "tting GEEs to the birth defect data are presented in Table II.
Two di!erent analyses are presented. The "rst allows a separate exposure e!ect for each outcome
(that is, di!erent b

j
for each j). As expected, the results are very similar to those found in Table I

for the univariate analyses. The second analysis assumes a common b. The estimated value of
b"!0)031 is signi"cantly di!erent from zero (p"0)012) based on a wald test. The estimate
correlation parameter "tted under the exchangeable model was o"0)079. Virtually identical
results were obtained when a completely unstructured covariance was assumed. The correlations
among the observed outcomes ranged from 0)23 (for ear length and width) to !0)06 (between
nose and "nger lengths). When the exchangeable correlation was estimated separately for two
groups results were also unchanged (b"!0)027, p"0)026).

Although GEEs have the advantage of simplicity, a limitation is the di$culty in assessing an
overall exposure e!ect. Speci"cally, testing for the exposure e!ect is based on a M degree-of-
freedom test, that is, all b

j
"0, and could be subject to low power (see Legler et al.12). It is also
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Table III. Two-stage factor analysis } model 1

Outcome Factor loadings Speci"c variance % Experimental variance

Bitemporal 0)107 0)268 4%
Nose 0)033 0)041 3%
Ear length 0)245 0)040 60%
Ear width 0)056 0)034 9%
Finger 0)025 0)093 1%

b !0)111

unclear how to use the estimated b
j
to calculate a meaningful overall exposure e!ect estimate.

A common practice is to use the average value of the estimated b
j
as an overall metric. However,

the M outcomes y
ij

could be subject to di!erent units and di!erent scalings. Hence this average
may not be meaningful and may be dominated by the b

j
whose y

ij
1s have relatively large scales.

The same argument applies to assuming a common b in (1).

3.2. Two-stage factor analysis

Another standard approach to the problem of multiple outcomes is that of two-stage factor
analysis. For our example, this method would proceed as follows. First, we remove the impact of
the confounding variables gender and gestational age by "tting individual linear regression
models for each outcome, and use the residuals from those "ts as the outcomes to be input into
the factor analysis. The "rst factor score from the analysis is then output, and the impact of
exposure on the latent outcome is assessed using a linear regression on the exposure variable.
Results from this analysis are presented in Table III. Notice that ear length then bitemporal head
diameter have the two highest loadings (suggesting that these two variables will have the greatest
in#uence on the estimated latent variable, and through it, the exposure e!ect). A linear regression
to the factor scores estimated at the "rst stage yields an estimated exposure e!ect of !0)111, with
corresponding p-value (obtained by Generalized Likelihood Ratio) of 0)115. This method treats
the factor score as if it were "xed and known, not estimated. Better parameter estimates can be
obtained by using an iterative procedure, see below.

3.3. The latent variable model

Sammel and Ryan6 proposed the use of latent variable models to characterize the e!ect of an
exposure on multiple outcomes, while adjusting for a set of confounding variables. This model
can be viewed as integrating the two-stage factor analysis into a more rigorous likelihood
framework.

The latent variable model is best explained using a two-stage model. At Stage 1, we assume

y
ij
"xT

ij
a
j
#j

j
u
i
#e

ij
(2)

where u
i
is an unobserved (latent) variable unique to individual i which re#ects how severely the

ith subject is a!ected, and e
ij
&N(0, p2

j
) is a random error term. At Stage 2, the u

i
's are modelled

as a function of exposure

u
i
"z

i
b#a

i
(3)
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Table IV. Latent variable analysis } model 1

Outcome Factor loadings Speci"c variance % Experimental variance

Bitemporal 0)136 0)260 7%
Nose 0)042 0)040 4%
Ear length 0)189 0)063 36%
Ear width 0)063 0)034 10%
Finger 0)038 0)093 2%

b !0)325

where the a
i
&N(0, 1) are i.i.d. error terms. The regression coe$cient b measures the exposure

e!ect on the latent severity score u
i
. An advantage of the latent variable model is that a one

degree-of-freedom likelihood ratio test can be used to test for the overall exposure e!ect, and
could be more powerful compared to the M degree-of-freedom test used in the GEE setting.
Another advantage of the latent variable model is that one can estimate individual severity score
by calculating E(u

i
Dy

i
) for each subject.

It follows from equations (2) and (3) that the model for y
ij
, given a

i
is

y
ij
"xT

ij
a
j
#z

i
j
j
b#j

j
a
i
#e

ij
. (4)

Integrating over a
i
we have the marginal distribution

y
i
&N(x

i
a#z

i
kb, kkT#W)

where (y
i
, x

i
, a, W) are de"ned in the same way as in Section 3.1. Model "tting can proceed in

several di!erent ways, although the EM algorithm (Dempster et al.13) is a natural one. Sammel
and Ryan6 use a modi"ed EM known as the ECME (Liu and Rubin14) which, for subsets of the
parameters, conditionally maximizes the marginal or conditional likelihood at the M-step. This
algorithm (also the one used by Laird and Ware7) tends to be faster than the classical EM for
problems of this sort. Both ML or REML estimation are easily accommodated, the latter
requiring a straightforward modi"cation of the E-step. Table IV shows the results of "tting the
latent variable model to the birth defect data. Notice that consistent with the results reported in
Table III, the highest loadings correspond to bitemporal head width and ear length. The overall
e!ect of exposure (b"!0)325) is statistically signi"cant from 0, based on a generalized likeli-
hood ratio test (p"0)015), and is a threefold increase in the e!ect estimate obtained from the
TSFA approach.

While the latent variable model is appealing in many ways, analytic considerations and
simulations suggest that it may not be very robust. The approach has excellent power when the
model is correct, but can behave poorly when the model is violated in certain ways. In particular,
the estimate of the exposure e!ect can be biased when there exists a subset of uncorrelated
outcomes that are associated with exposure. This is because the latent variable model assumes
that the correlated outcomes are the ones associated with exposure. More precisely, since k enters
into both the mean and covariance speci"cations, misspeci"cation of the correlation structure, for
example, in the presence of a subset of uncorrelated outcomes, would bias the estimates of the
exposure parameter b. Another scenario where the estimate of the exposure parameter, b, can be
biased is when some of the correlated outcomes are not associated with exposure.
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The second scenario is illustrated by the following example. Speci"cally, we re-"t the model
adding the additional outcomes listed in Table I. We refer to this larger model as model 2. The
two added variables (weight and anterior}posterior head diameter) are correlated, but are not
signi"cantly e!ected by exposure (see Table I). The overall estimate of the exposure e!ect under
model 2 shrinks back towards zero (b"!0)218) and has a p-value of (0)042, based on the
generalized likelihood ratio test.

3.4. The multivariate linear mixed model

The robustness problems associated with the latent variable model motivate consideration of the
following random e!ects formulation which separates mean and covariance parameters

y
ij
"xT

ij
a
j
#z

i
b
j
#j

j
a
i
#e

ij
(5)

where a
i
&N(0, 1) and e

ij
&N(0,p2

j
). Goldstein (reference 15, Chapter 5) discusses some similar

classes of models for multivariate data. One problem with this model is that it does not lead to an
easy assessment of the overall e!ect of exposure. While an M degree-of-freedom test could be
applied, this is likely to have low power when most of the outcomes are similarly a!ected. In such
cases, a better alternative is to assume that all the b

j
's are equal to a common value, b. However,

this common dose e!ect assumption is often too strong, since di!erent outcomes are likely to be
measured on di!erent scales. Thus, the assumption of a common e!ect size may still be too strong,
since the strength of the exposure e!ect may vary among outcomes. To allow for this possibility,
one could assume di!erent b

j
's for di!erent standardized outcomes y

ij
/p

j
and smooth the b

j
's, for

example, by assuming b
j
&N(b, q2). Such an approach would be appealing since it would

facilitate empirical Bayes-type shrinkage of the exposure e!ects on each outcome towards some
central, overall e!ect, and the test for the exposure e!ect can be based on a more powerful one
degree-of-freedom test. However, a problem is that the asymptotics are not right; we would need
the number of outcomes to be large in order to satisfactorily apply such a random e!ects model.
In the presence of only a few outcomes, this strategy does not work. A remedy for this problem is
to further borrow information from di!erent subjects in our process of smoothing the exposure
e!ect. In other words, we smooth the exposure e!ect by borrowing information from di!erent
outcomes and di!erent subjects.

To provide further motivation for this idea, suppose for a moment that the outcomes are
measured in the same scale, there are no confounding variables and we can observe each person's
multivariate outcome vector y

i
under both treatment and control settings, say, y

i
(1) and y

i
(0),

respectively. Each person, hence, could provide an estimate of b
1
,2b

M
, say, b

ij
">

ij
(1)!>

ij
(0).

In this setting, it would make sense to assume a "rst-stage model such as

y
ij

p
j

"xT

ij
a
j
#z

i
b
ij
#j

j
a
i
#e

ij
(6)

then smooth the b
ij
's using a second-stage model

b
ij
"b#d

j
b
i

(7)

with b
i
&N(0, 1), borrowing an idea commonly used in growth curve modelling. Under the

assumption of random assignment to exposure group, conditional on other covariates, we
can integrate over the distribution of the unobserved outcomes to obtain a model that can be "t
in the context where we only observe each individual once. In fact, we can still "t the model
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Table V. MLMM } model 1

Outcome j
j

d
j

p
j

Bitemporal 1)233 0)222 0)432
Nose 0)183 0)171 0)201
Ear length 0)103 0)918 0)233
Ear width !0)212 0)369 0)179
Finger 0)001 0)101 0)304

b !0)175

characterized in two stages by (6) and (7) as

y
ij

p
j

"xT

ij
a
j
#z

i
b#j

j
a
i
#z

i
d
j
b
i
#e

ij
. (8)

This is the model we refer to as the multivariate linear mixed model (MLMM). Integrating over
the random components yields the following multivariate linear mixed model for the marginal
distribution of y

i
:

y
i
&N(W1@2(xT

i
a#z

i
b1), W1@2(kkT#z

i
ddT

#I)W1@2).

Several features of this model are worth noting. The fact that it parameterizes the exposure e!ect
in terms of e+ect sizes is appealing, since many clinicians are familiar with this concept. The
parameter b re#ects the overall or average e!ect size of exposure. Hence one can easily apply
a one degree-of-freedom likelihood ratio test to assess global e!ects. Although model (8) assumes
that the mean exposure e!ect is the same for all outcomes on the standardized scale, it allows
di!erent mean exposure e!ects for di!erent outcomes on the original scales. The exposure e!ect
on the jth outcome can be estimated using p

j
b. A unique feature of MLMM is that it allows one to

estimate subject-speci"c exposure e!ects on the jth outcome as p(
j
[b)#d)

j
E (b

i
Dy

i
)].

The MLMM is related to both the GEE model and the latent variable model. Speci"cally, the
MLMM can allow for an exchangeable correlation among outcomes by setting d

j
"0 and

assuming the j
j
to be the same for all j. The latent variable model (4) can be obtained by setting

d
j
"0, then replacing p

j
b in the mean by j

j
b and j

j
p
j
a
i
in the covariance speci"cation by j

j
a
i
.

This suggests that, unlike the latent variable model, the mean and covariance parameters in
MLMMs are loosely connected through the residual variances p2

j
. One can easily show that the

correlations among outcomes speci"ed under the MLMM depend only on (k, d), which are
separated from the parameters (a,b,r) used in the mean speci"cation. Hence, we expect that the
MLMM will be more robust than the latent variable model when the correlation structure is
misspeci"ed, for example, when a subset of outcomes are not correlated.

Inference in MLMMs can proceed by using the maximum likelihood method via directly
maximizing the log-likelihood (10) from the appendix. Alternatively, the EM algorithm or its
modi"cations can be used (see the Appendix for details), The MLEs of the parameters in model 1
for the birth defect data are given in Table V. The results suggest highly signi"cant exposure
e!ect, b"!0)175, (p(0)001, based on GLR test).
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Table VI. Summary of model "ts

Average e!ect s2
1

p-value

(a) Model 1: ,rst ,ve outcomes from ¹able I

GEE !0)031 6)371 0)012
TSFA !0)010 2)490 0)115
LV !0)031 5)944 0)015
MLMM !0)047 11)293 (0)001

(b) Model 2: Model 1#2 corr/una+ected

GEE !0)026 4)390 0)037
TSFA !0)025 3)580 0)109
LV !0)038 4)130 0)042
MLMM !0)039 7)220 0)007

4. MODEL COMPARISONS

Table VI summarizes the results of "tting GEEs, the two-stage factor analysis, a latent variable
model and the MLMM model to the two di!erent subsets of the variables described in Table I.
Model 1 includes the "rst "ve variables from Table I, while model 2 includes all seven. For
comparisons, an overall measure of the exposure e!ect is needed for each model, as well as
a signi"cance test. For the GEE model (1), an overall metric is the common exposure e!ect b. To
maintain comparability with the GEE method, we use k1 b to summarize the overall e!ect for the
two-stage factor analysis and also for the latent variable model (3.4). For the MLMM model, we
use r6 b, where k1 and r6 are average values taken over the M outcomes.

Outcomes in the "rst subset were selected to best "t the latent variable model, and we see
comparable magnitude of the exposure test for each of the analyses. The two-stage factor analysis
estimate of the exposure e!ect is smaller, and the test is non-signi"cant, most likely because it
does not consider the error in the estimation of the factor scores. The addition of the last two
outcomes from Table I changes the estimated magnitude and strength of the association between
exposure and birth outcomes. Notice that the latent variable analyses now yields only a margin-
ally signi"cant result, whereas the GEE and MLMM approaches maintain their signi"cance.

In contrast to the GEE model, the TSFA, LV and MLMM analyses a!ord the opportunity to
compute a summary score which ranks the subjects with respect to the multiple outcomes. The
factor scores can be used to rank the subjects for the TSFA model (Johnson and Wichern2), while
Sammel and Ryan6 illustrate the use of a similar summary score for the LV model. For the
MLMM model we can use the estimate of the random e!ect aL

i
#z

i
(b#dM bK

i
), where aL

i
"E(a

i
Dy

i
)

and bI
i
"E(b

i
Dy

i
). Histograms for the summary scores by exposure status are presented in Figure 1.

For control subjects, the summary score is centred near zero, but the average score for those
exposed to anticonvulsants is shifted to the left.

Finally, it is useful to discuss and compare the degree to which the various methods provide
estimates of the exposure e!ects associated with individual outcomes. The GEE estimates the
outcome-speci"c estimates by b

j
. For both the TSFA and LV approaches, the exposure e!ect on

the jth outcome can be estimated by j
j
b. For the MLMM model, one can estimate the marginal

e!ect of exposure on the jth outcome by p
j
b.
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Figure 1. Subject summary scores by exposure

Figure 2. Global and individual exposure e!ect estimates for outcomes: 1, head-bt; 2, nose; 3, ear-l; 4, ear-w; 5, "nger;
6, weight; 7, head-ap; X, global e!ect estimate

The two rows in each panel of Figure 2 show respectively overall exposure e!ect and individual
e!ects estimated separately for each of the seven outcomes. Notice that outcome 1 (bitemporal
head diameter) has a much stronger e!ect, !0)2, than any of the other outcomes. The two-stage
factor analysis model, and to some extent the latent variable model, overestimate the exposure
e!ect on outcomes 6 (birth weight) and 7 (anterior}posterior head diameter). This happens
because the "rst latent factor is dominated by the variables which re#ect the infant's size,
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regardless of their association with exposure. The MLMM marginal estimates refer to the values
p
j
b, and are the overall exposure e!ect size re#ected on the original scale of each outcome. It is

also useful to examine the estimated values of d. For the seven listed in Table I, these values were:
1)957; 0)166; 0)144; !0)219; !0)014; 0)318; 0)644. These weights, based upon the correlation
among outcomes in the exposed group, have been used to smooth the individual e!ect estimates
to generate the overall estimate for the MLMM model.

5. DISCUSSION

Although the MLMM model is less restrictive than the LV model, it provides a #exible
framework for analysing multiple outcomes. The approach retains some appealing features of the
latent variable model of Sammel and Ryan.6 For example, it allows associations between the
outcomes to in#uence the way they are combined to create a summary score, but, in contrast
to the latent variable approach, the MLMM untangles the mean and variance parameters so that
the model is more robust. Through the birth defects illustration we demonstrate that the size of
the exposure e!ect is maintained under various correlation structures.

The approach bears some similarity with Goldstein's multi-level approach to analysing
multivariate data (Goldstein, reference 15, Chapters 5). However, the MLMM di!ers from the
Goldstein approach in several important ways. One important di!erence is the scaling by p prior
to specifying the regression model on each outcome, so that exposure e!ects are characterized in
terms of e+ect sizes. A second di!erence is the smoothing of exposure e!ects, as in (7).

Although the MLMM model has fewer assumptions than the LV model of Sammel and Ryan,
two strong assumptions remain. The "rst is the assumption of a single latent variable in each of
the two groups. The second is that the exposure e!ects are homogeneous, and therefore the
smoothing of the estimates is valid. Further work is needed to test the validity of these
assumptions. There are several other aspects of the MLMM worthy of further research. Ques-
tions remain regarding issues of outcome selection, extensions to include non-Gaussian outcomes
and mixtures of outcomes, as well as expansions to incorporate longitudinal and/or spatial
correlations. It would also be worthwhile to explore the use of robust variance estimates of the
kind used in GEE estimation.

APPENDIX: ESTIMATION PROCEDURES

Likelihood equation

De"ne W"diag Mp2
j
N, x

i
is a block diagonal matrix with MxT

ij
N ( j"1,2,J ) on the diagonal and

a"(aT

1
,2, aT

J
)T. Rewrite (6) and (7) for subject i, the vector of scaled outcomes as
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(9)

where X
i
"(x

i
, z

i
1) and c"(a, b)T. The log-likelihood contribution associated with y

i
is
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i
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#I. The full log-likelihood is given by l(y)"+n
i/1

l(y
i
).
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Given (9), the joint distribution of ( ys
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By re-expressing this in terms of the conditional distribution of ys given a
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and b

i
, it follows that

the log-likelihood based on the complete data (y
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) is then
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EM algorithm

Beginning with suitable initial values for the parameter estimates, such as parameters from
univariate regressions, iterate between the maximization and expectation steps until convergence.

Maximization step

Given the values of d, k and r, we can estimate the "xed e!ects parameters from the marginal
likelihood of ys

i
directly. Di!erentiation of (10) with respect to c gives the score equation for c as

n
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The remaining parameters can be obtained by solving the expected score equations obtained
from the complete data likelihood, obtained by taking expectations with respect to the posterior
distribution of the missing random e!ects given the observed outcomes and current values of
unknown parameters. From equation (11), the score equations are
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We hence can update (k, d) in each M-step using
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Since the solution to the equation for p has no closed form, updates for this parameter can be
computed using a one-step Fisher approximation for iteration t#1 of the form
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are the marginal mean and variance of the unscaled y
j
. The calculations are very

simple. Evaluation of the right hand sides of the above equations require calculating E (a
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Expectation step

The conditional distribution of random e!ects given the observed data for ML estimation is
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For REML estimation the covariance becomes
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